Nonnegative Tensor Completion via Low-Rank Tucker Decomposition: Model and Algorithm
نویسندگان
چکیده
منابع مشابه
Low-Rank Matrix and Tensor Completion via Adaptive Sampling
We study low rank matrix and tensor completion and propose novel algorithms that employ adaptive sampling schemes to obtain strong performance guarantees. Our algorithms exploit adaptivity to identify entries that are highly informative for learning the column space of the matrix (tensor) and consequently, our results hold even when the row space is highly coherent, in contrast with previous an...
متن کاملEfficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملA New Low-Rank Tensor Model for Video Completion
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm or t-TNN for short. The twist tensor denotes a 3-way tensor representation to laterally store 2D data slices in order. On one hand, t-TNN convexly relaxes the tensor multi-rank of the twist tensor in the Fourier domain, which allows an efficient computation using FFT. On the o...
متن کاملCross: Efficient Low-rank Tensor Completion
The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this artic...
متن کاملLow-Rank Tensor Completion by Riemannian Optimization∗
In tensor completion, the goal is to fill in missing entries of a partially known tensor under a low-rank constraint. We propose a new algorithm that performs Riemannian optimization techniques on the manifold of tensors of fixed multilinear rank. More specifically, a variant of the nonlinear conjugate gradient method is developed. Paying particular attention to the efficient implementation, ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2929189